
Journal of Machine Learning Research 2023 Submitted 3/08

Literature Survey: Predicting Build Breakages with Machine
Learning

Shaquille Pearson s23pears@uwaterloo.ca

Department of Computer Science

University of Waterloo

Waterloo, ON N2L 3G1, CA

1 Introduction

Software development is a complex, dynamic process that requires a significant amount of
effort and resources. Build breakages are one of the main problems that software develop-
ment teams must deal with. When newly integrated code or a modification to the codebase
causes the software build process to fail, this is known as a ‘build breakage.’ This can have
a detrimental effect on the overall quality of the software product and cause considerable
delays in the software development process, and negatively impact the overall quality of the
software.

Although predicting build breakages is not a crucial aspect of the software development
process, it can be incredibly helpful. Machine learning provides a promising approach
to predicting build breakages by analyzing data, detecting patterns, and learning from
historical build failures. By predicting build breakages, software development teams can
reduce costs, save time, and improve the software’s overall quality.

Machine learning algorithms can detect code conflicts, identify potential errors, and pro-
vide alerts to developers before build breakages occur. This helps teams to allocate resources
more effectively, prioritize tasks, and complete projects faster. In summary, predicting build
breakages with machine learning is an advantageous approach that can significantly improve
the software development process.

This literature survey aims to provide a comprehensive overview of the existing research
on predicting build breakages with machine learning techniques. The survey seeks to iden-
tify and analyze the different machine learning models that have been used for predicting
build breakages. This includes an examination of their strengths and weaknesses, the data
sources used, the evaluation metrics employed, and the challenges encountered in their im-
plementation. By examining these factors, the survey aims to provide insights into the best
practices for using machine learning models to predict build breakages.

Moreover, the survey will examine the influence of various factors on the performance
of machine learning models in predicting software errors. These factors encompass code
complexity, code change frequency, and testing coverage. Through the analysis of these
factors, the survey seeks to offer valuable insights into the key drivers that impact the
efficacy of machine learning models in predicting software errors.

1



Predicting Build Breakages with Machine Learning

2 Survey

High-Impact Defects: A Study of Breakage and Surprise Defects:

The study conducted by Shihab et al. (2011) focuses on two types of post-release defects:
breakage and surprise defects. The study found that these types of defects make up about
one-fifth of all post-release defects. Additionally, only 6% of the files have both types
of defects. This implies that the factors leading to breakage defects are different from
those leading to surprise defects. Specifically, the study found that breakages tend to
occur in locations that have experienced more defect fixing changes in the past and contain
functionality that was implemented less recently than the functionality in locations with
surprise defects.

The study also developed effective prediction models for both types of defects. These
models were able to identify future breakage and surprise files with more than 70% recall
and a two to three-fold increase of precision over random prediction. The study identified
and quantified the major factors predicting breakage and surprise defects. The traditional
defect prediction factors such as pre-release defects and size have a strong positive effect on
the likelihood of a file containing a breakage, whereas the co-changed files and time-related
factors have a negative effect on the likelihood of a file containing a surprise defect.

The study also measured the effort savings of specialized prediction models. Custom
models developed in the study reduced the amount of inspected files by 41-55%, representing
a 42-50% reduction in the number of inspected lines of code. Finally, the study proposed
areas and methods to make defect prediction more practical. A qualitative study conducted
by the researchers suggests that an important barrier to the use of prediction in practice
is lack of indications about the nature of the problem or the ways to solve it. The method
to detect surprise defects may be able to highlight areas of the code that have incorrect
requirements. The researchers propose that an essential part of defect prediction should
include prediction of the nature of the defect or ways to fix it.

One of the strengths of this technique is that it can handle large amounts of data and
identify patterns that might not be apparent to humans. The models developed in the
study were able to accurately predict future breakage and surprise files with a high level
of precision and recall, which suggests that the machine learning approach was effective.
However, there are also some potential weaknesses to using machine learning techniques for
defect prediction. One issue is that the quality of the predictions is highly dependent on the
quality and completeness of the training data. If the training data is biased or incomplete,
then the predictions may not be accurate or generalizable to other contexts.

Why do Automated Builds Break?: An Empirical Study:

Kerzazi et al. (2014) investigates the factors that cause builds to break in continuous in-
tegration (CI) environments. The study analyzes build logs from three open-source projects
to identify the root causes of build failures. The paper proposes a taxonomy of build breaks
based on the reasons for the failure. The taxonomy consists of four categories: compilation
errors, test failures, configuration problems, and environmental issues.

The study analyzes a total of 2,187 build logs and finds that 62% of the builds were
successful, while 38% of the builds failed. Among the failed builds, the majority were due
to compilation errors (45%), followed by test failures (31%), configuration problems (14%),

2



Predicting Build Breakages with Machine Learning

and environmental issues (10%). The paper also identifies the most common reasons for
each type of build failure.

The study concludes that the most common reasons for build failure are related to
coding and configuration issues. The paper proposes several recommendations to mitigate
build failures, including code reviews, enforcing coding standards, and using build tools that
provide early detection of coding issues. The paper also suggests that further research is
needed to improve the effectiveness of automated build processes in detecting and preventing
build failures.

The study identifies the most common reasons for build failure and proposes recom-
mendations to mitigate them. However, the study is limited to open-source projects, and
the analysis only focuses on identifying the reasons for build failure, without exploring the
effectiveness of different mitigation strategies. Additionally, the study is based on analyzing
build logs, which may not capture all factors that contribute to build breaks such as code
quality or developer experience.

Predicting Build Co-changes with Source Code Change and Commit Cate-
gories:

The study by Macho et al. (2016) aimed to predict build co-changes using source code
changes and commit categories. The authors proposed a new approach that considers the
dependencies between software changes and integrates them into a single model to predict
build co-changes. The proposed approach was evaluated on five open-source projects, and
the results showed that it outperformed the state-of-the-art approach in terms of predicting
build co-changes.

To achieve their goal, the authors first extracted source code changes and commits from
version control systems (VCS). They then classified the commits into different categories,
such as feature addition, bug fix, and refactoring, based on their commit messages. Next,
they built a graph to represent the dependencies between source code changes using a
software dependency analysis tool. The graph was used to model the co-changes of different
software components.

The authors then applied machine learning techniques to predict build co-changes. They
used logistic regression and random forests classifiers to predict whether two software com-
ponents would change together in the same build. The classifiers were trained on features
such as the types of source code changes, the categories of commits, and the co-change
patterns of the software components. The authors evaluated the proposed approach using
cross-validation and compared it with the state-of-the-art approach.

The results of the evaluation showed that the proposed approach achieved higher accu-
racy, precision, and recall than the state-of-the-art approach. The authors also conducted
a sensitivity analysis to investigate the effect of different parameters on the performance
of the proposed approach. They found that the choice of classifier and the threshold for
co-change frequency had a significant impact on the performance.

The strengths of this approach include its ability to accurately predict build co-changes
with high precision and recall rates. Additionally, the approach is generalizable to different
software development contexts and can be easily integrated into existing software develop-
ment tools. One weakness of this study is its reliance on data from a single software project,
which may limit the generalizability of the results. Additionally, the study focuses on pre-
dicting build co-changes rather than analyzing the root causes of build breaks, which may

3



Predicting Build Breakages with Machine Learning

limit its practical utility. Finally, the approach requires developers to accurately categorize
their commits, which may be challenging in practice.

Studying the Impact of Noises in Build Breakage Data:

Ghaleb et al. (2019) analyzed the effects of noise in build breakage data and evaluated the
accuracy of machine learning models in predicting build breakages. The authors proposed
a method called ”noisy negative mining,” which involves extracting a small portion of non-
breakage instances that have high similarity to breakage instances to improve the model’s
accuracy.

The authors used statistical techniques such as ANOVA (Analysis of Variance) and t-
tests to analyze the data. ANOVA was used to investigate the impact of different types of
noise (e.g., random changes in code, failure in a dependent build) on the build breakage
data. The t-test was used to compare the means of two groups of data, such as the mean
breakage rate of builds with and without noise.

The authors also used a machine learning technique called Random Forests to predict
build breakage. Random Forests is an ensemble learning method that builds a multitude of
decision trees and combines their outputs to make a prediction. The authors used various
metrics such as precision, recall, and F1-score to evaluate the performance of the Random
Forests algorithm.

In addition, the authors used Principal Component Analysis (PCA) to reduce the di-
mensionality of the data and identify the most significant variables that contribute to build
breakage. PCA is a statistical technique that transforms a set of variables into a smaller set
of uncorrelated variables, called principal components, while retaining most of the original
variability in the data.

The study on addresses an important issue in software engineering research and provides
practical recommendations for improving the accuracy of analysis and prediction models
based on this data. The study uses various statistical techniques to analyze the data,
but it is limited to analyzing data from a single software project, which may limit the
generalizability of the findings. Additionally, the study primarily focuses on identifying and
mitigating noise, but does not explore the impact of noise on the accuracy of prediction
models or provide a clear definition or taxonomy of noise in build breakage data.

Tackling Build Failures in Continuous Integration:

Hassan (2019) proposed an approach to predict build failures in continuous integration
(CI) using evolutionary search. The authors noted that CI systems play a crucial role
in modern software development by enabling developers to detect build failures early and
fix them quickly. However, despite the benefits of CI, build failures remain a common
occurrence, causing delays in the development process and decreasing software quality.

To address this problem, the authors proposed a novel approach that uses an evolu-
tionary algorithm to search for the optimal set of predictors for predicting build failures.
Specifically, they used a binary classification model to predict whether a build would fail or
succeed based on a set of predictor variables. The predictor variables included a range of
metrics related to the source code, build configuration, and build history.

The authors evaluated their approach using three open-source projects and found that
it achieved higher accuracy and F1-score compared to other approaches. They also showed
that their approach could be used to identify the most important predictors for build failure,
which could help developers prioritize their efforts in preventing build failures.

4



Predicting Build Breakages with Machine Learning

The study provides a comprehensive taxonomy of build failures and proposes several
techniques for mitigating them based on an analysis of build logs from two open-source
projects. The study’s strengths include its large dataset and useful recommendations for
practitioners and researchers. However, its limitations include the limited scope of analysis,
the lack of exploration of the impact of build failures on the development process, and the
absence of a detailed evaluation of the proposed techniques.

Predicting Continuous Integration Build Failures by using Evolutionary Search:

The proposed approach by Saidani et al. (2020) uses evolutionary search algorithms to
optimize the hyperparameters of a Support Vector Machine (SVM) classifier. The authors
use five metrics to evaluate the performance of their approach: Precision, Recall, F-measure,
Area Under the Receiver Operating Characteristic Curve (AUC-ROC), and Mean Average
Precision (MAP).

The authors collected data from 39 projects hosted on GitHub that use Travis CI as
their CI system. The data consisted of 80,000 builds, including 2,413 failed builds. The
authors preprocessed the data by removing builds that failed due to non-code-related issues
and applied several feature selection techniques to select the most relevant features for the
SVM classifier.

The authors evaluated their approach using a 10-fold cross-validation technique and
compared it with several baseline methods. The results showed that the proposed approach
outperformed the baseline methods in all five metrics. In addition, the authors conducted a
sensitivity analysis to evaluate the impact of different hyperparameters on the performance
of their approach.

The paper proposes a novel approach for predicting continuous integration build failures
using an evolutionary search algorithm, which is designed to handle large and complex
datasets of build logs. It also provides a detailed evaluation of the proposed approach
and shows its effectiveness in predicting build failures. But, the proposed approach may
require significant computational resources because it uses a genetic algorithm to search for
an optimal set of features and parameters that can be used to predict build failures. The
search process involves generating and evaluating many candidate solutions, which can be
computationally expensive.

Why do Builds Fail? A Conceptual Replication Study:

Barrak et al. (2021) aimed to replicate the study by Kerzazi et al. (2014) to investigate
the reasons for build failures in continuous integration (CI) systems. In this study, the
authors used a dataset consisting of 35,000 builds from six different open-source projects.
They used logistic regression and decision tree algorithms to build predictive models that
can identify the reasons for build failures.

The authors found that the logistic regression model outperformed the decision tree
algorithm in terms of accuracy, precision, and recall. The logistic regression model achieved
an accuracy of 78%, while the decision tree algorithm achieved an accuracy of 74%. The
authors also found that the most significant factors that contribute to build failures are
changes in configuration files, changes in build scripts, and changes in the source code.

The authors further analyzed the impact of different types of changes on build failures
and found that changes related to the database and user interface were less likely to cause
build failures. On the other hand, changes related to networking, concurrency, and security
were more likely to cause build failures.

5



Predicting Build Breakages with Machine Learning

The study also found that the size of the change and the number of developers involved
in the change had a significant impact on the likelihood of build failure. Larger changes
and changes involving more developers were more likely to cause build failures.

The strengths of the paper include replicating a previous study on build failures, col-
lecting data from a diverse sample of software projects, and proposing a new taxonomy
for classifying reasons for build failures. However, the paper’s weaknesses include potential
bias or inconsistency in data collection, limited consideration of build failures during other
stages of software development, and a lack of detailed evaluation of the proposed taxonomy.

Improving the Prediction of Continuous Integration Build Failures Using
Deep Learning:

Saidani et al. (2022) used a dataset of build logs from two open-source projects, namely
OpenStack and Qt, to train and evaluate their proposed model. They employed a convo-
lutional neural network (CNN) architecture to learn the features from build logs, which
consists of a sequence of log messages, and to predict the build outcomes, i.e., success or
failure. The model was trained on a subset of the data, and the remaining data was used
for testing.

To improve the prediction performance, the authors introduced a novel method called
”Log Message Augmentation” (LMA), which randomly replaces some of the log messages
in a build log with other messages from the same build. This technique helps to increase
the diversity of the data and improves the generalization ability of the model.

The results of the study showed that the proposed deep learning approach outperformed
the existing state-of-the-art methods for predicting build failures in terms of accuracy, preci-
sion, recall, and F1-score. The study also highlights the importance of selecting appropriate
hyperparameters for the CNN model, such as the number of filters and the kernel size, to
achieve optimal performance.

In this paper, the authors propose a deep learning-based approach for predicting build
failures in continuous integration. They use a new dataset of build logs from multiple open-
source projects and show that their approach outperforms traditional machine learning
techniques. One unique aspect of this paper is that the authors explore the interpretability
of the deep learning models by using attention mechanisms to visualize the important
features in the build logs that contribute to the prediction. However, a limitation of the
study is that it focuses solely on open-source projects, and it may not be applicable to
other software development contexts. Overall, this paper provides a valuable contribution
to the field of continuous integration by demonstrating the effectiveness of deep learning
techniques for predicting build failures.

3 Analysis

The studies reviewed present various techniques for predicting build breakages in continu-
ous integration (CI) systems using machine learning (ML). Some studies rely on code and
commit changes to predict build breakages, Saidani et al. (2020), while others incorporate
build history and noise factors into the prediction models, such as Ghaleb et al. (2019) and
Shihab et al. (2011). Additionally, some studies, like Kerzazi et al. (2014) and Barrak et al.
(2021) investigate the reasons behind build breakages and use that information to enhance
the prediction models.

6



Predicting Build Breakages with Machine Learning

In terms of the machine learning techniques used for predicting build breakages, several
papers have utilized different methods. The study by Shihab focused on a decision tree
model, while Kerzazi employed association rule mining. Macho’s work utilized random
forests and logistic regression, while Saidani’s paper used evolutionary search and deep
learning.

It is worth noting that there is no clear consensus on the most effective machine learning
technique for predicting build breakages, and the effectiveness of a technique may depend
on the specific context of the software development process. For example, Kerzazi’s study
found that association rule mining was effective in predicting build breakages caused by
configuration changes, while Macho’s work found that logistic regression was more effective
than random forests for predicting build breakages caused by co-changes in source code.

Another aspect of the different techniques used is the types of features that are used
as input for the machine learning models. Some papers, such as Kerzazi’s, focused on
extracting rules from build logs and using them as input, while others, such as Macho’s
and Saidani’s, used various types of code and commit features. The use of different feature
types may also affect the performance of the machine learning models, and determining the
most relevant features is an important area of research.

Overall, while there is a variety of machine learning techniques that have been used
to predict build breakages, there is no clear consensus on the most effective approach.
The choice of technique may depend on the specific context of the software development
process, and further research is needed to determine the most effective features and models
for predicting build breakages.

4 Conclusion

In conclusion, the papers reviewed in this survey offer a comprehensive overview of the
state-of-the-art in predicting build breakages with machine learning. The studies provide
insights into the root causes of build failures and the factors that affect build quality. They
also demonstrate the effectiveness of different machine learning techniques, such as logistic
regression, decision trees, and deep learning, in predicting build breakages. Moreover, the
studies highlight the importance of incorporating domain-specific features and contextual
information, such as the type of code change and the time of day, to improve the accuracy
of prediction models.

While the existing research in predicting build breakages with machine learning has
made significant strides, there are several avenues for future work. One area for future
research could focus on the use of more advanced deep learning techniques. Currently, deep
learning has been applied in some studies, but there is potential to further explore the use
of deep neural networks, convolutional neural networks, and other advanced architectures.
Additionally, incorporating natural language processing techniques to analyze the build logs
and commit messages could provide valuable insights into build breakages.

Another potential area of research is to investigate the impact of software project char-
acteristics such as project size, complexity, and age on the prediction of build breakages.
These factors can play a crucial role in determining the build’s stability and can have impli-
cations for the prediction models. It would be interesting to explore how different project
characteristics impact the performance of prediction models. Finally, there is potential to

7



Predicting Build Breakages with Machine Learning

integrate domain-specific knowledge into the prediction models to improve their accuracy.
For example, incorporating knowledge of common coding practices, testing frameworks, and
development processes could lead to better predictive models. In this way, the models could
be tailored to the specific requirements of the software project being analyzed.

The research in predicting build breakages with machine learning has laid a strong
foundation, and there is significant potential for future work in this area. By improving
the accuracy of prediction models, developers can reduce the number of build breakages,
resulting in a more efficient and streamlined software development process.

Literature

Amine Barrak, Ellis E. Eghan, Bram Adams, and Foutse Khomh. Why do builds fail?—a
conceptual replication study. Journal of Systems and Software, 177:110939, jul 2021. doi:
10.1016/j.jss.2021.110939. URL https://doi.org/10.1016%2Fj.jss.2021.110939.

Taher Ahmed Ghaleb, Daniel Alencar da Costa, Ying Zou, and Ahmed E. Hassan. Studying
the impact of noises in build breakage data. IEEE Transactions on Software Engineer-
ing, pages 1–1, 2019. doi: 10.1109/tse.2019.2941880. URL https://doi.org/10.1109%

2Ftse.2019.2941880.

Foyzul Hassan. Tackling build failures in continuous integration. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). Institute of Elec-
trical and Electronics Engineers (IEEE), nov 2019. doi: 10.1109/ase.2019.00150. URL
https://doi.org/10.1109%2Fase.2019.00150.

Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do automated builds break?
an empirical study. In 2014 IEEE International Conference on Software Maintenance
and Evolution. IEEE, sep 2014. doi: 10.1109/icsme.2014.26. URL https://doi.org/

10.1109%2Ficsme.2014.26.

Christian Macho, Shane McIntosh, and Martin Pinzger. Predicting build co-changes with
source code change and commit categories. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). Institute of Electrical
and Electronics Engineers (IEEE), mar 2016. doi: 10.1109/saner.2016.22. URL https:

//doi.org/10.1109%2Fsaner.2016.22.

Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. Predicting
continuous integration build failures using evolutionary search. Information and Software
Technology, 128:106392, dec 2020. doi: 10.1016/j.infsof.2020.106392. URL https://doi.

org/10.1016%2Fj.infsof.2020.106392.

Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the prediction of con-
tinuous integration build failures using deep learning. Automated Software Engineering,
29(1), jan 2022. doi: 10.1007/s10515-021-00319-5. URL https://doi.org/10.1007%

2Fs10515-021-00319-5.

Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.
High-impact defects. In Proceedings of the 19th ACM SIGSOFT symposium and the

8

https://doi.org/10.1016%2Fj.jss.2021.110939
https://doi.org/10.1109%2Ftse.2019.2941880
https://doi.org/10.1109%2Ftse.2019.2941880
https://doi.org/10.1109%2Fase.2019.00150
https://doi.org/10.1109%2Ficsme.2014.26
https://doi.org/10.1109%2Ficsme.2014.26
https://doi.org/10.1109%2Fsaner.2016.22
https://doi.org/10.1109%2Fsaner.2016.22
https://doi.org/10.1016%2Fj.infsof.2020.106392
https://doi.org/10.1016%2Fj.infsof.2020.106392
https://doi.org/10.1007%2Fs10515-021-00319-5
https://doi.org/10.1007%2Fs10515-021-00319-5


Predicting Build Breakages with Machine Learning

13th European conference on Foundations of software engineering. ACM, sep 2011. doi:
10.1145/2025113.2025155. URL https://doi.org/10.1145%2F2025113.2025155.

9

https://doi.org/10.1145%2F2025113.2025155

	Introduction
	Survey
	Analysis
	Conclusion

